

Supplementary Figure S1. RTK and COT expression levels in patient-matched melanoma tissues. Paired RNAs/cDNAs from baseline (B) and disease progression (DP) melanomas (from patients treated with either vemurafenib or dabrafenib) were subjected to Q-PCR, measuring the levels of indicated transcripts. Results are the average of duplicates. Patient numbers correspond to those in Supplementary Table S1.

ERK reactivation and harboring trB-RAF. (a) M397 parental (P) cell line was treated with incremental concentrations of PLX4032/vemurafenib over four weeks, deriving a resistant (R) subline, M397 R. Isogenic lines were treated with increasing concentrations of vemuafenib/PLX4032 or DMSO (vehicle), and cells quantified by a MTT assay. Survival curves are shown after 72 h drug treatments, and data represent percent surviving cells relative to DMSO-treated controls (mean ± SEM, n = 5). (b) Isogenic paired cell lines were treated with PLX4032 at 0, 0.01, 0.1, 1.0 and 10 μM of PLX4032 (1 h) after 24 h seeding period during which M397 R was withdrawn from routine maintenance treatment with 1 μM PLX4032. (c) cDNAs from M397 parental (P) and vemurafenibresistant (R) cell lines were subjected to PCR to detect full-length B-RAF and the B-RAF variant (truncated B-RAF) (left) and to detect trBRAF specifically using an exon1-exon11 junction primer (right). (d) Protein lysates from M397 P and M397 R were probed by western blotting for the presence of both full-length B-RAF (90 KD) and trB-RAF (40 KD) using a B-RAF antibody raised against the C-terminal end. Blocking using bovine serum albumin (BSA) vs. non-fat milk (NFM).

Supplementary Figure S3. Amplification of ^{V600E}B-RAF in the M395 isogenic model of acquired B-RAFi resistance. (a) M395 was established from a non-regressing adrenal metastasis in a patient treated with vemurafenib after 5 months on therapy. The cell line established from the tumor biopsy was not cultured in vemurafenib, and this cell line maintained *in vitro* sensitivity to vemurafenib and was designated as M395 P. The resistant sub-line, M395 R, was derived by titrating increasing concentration of PLX4032 from 0.01 to 10 μM over two months. Both P and R lines are V600E homozygous at *B-RAF*. (b) Copy numbers of ^{V600E}B-RAF as determined by gDNA Q-PCR (normalized to *globin* levels) and relative to diploid cells (PMN and HDF) using two independent sets of primers. Results are average values of duplicates. (c) ^{V600E}B-RAF levels as determined from RNA/cDNAs using Q-PCR (normalized to either *tubulin* or *GAPDH*). (d) ^{V600E}B-RAF protein levels as shown by western blotting (tubulin, loading control).

Supplementary Figure S4. RTK-independent, ERK reactivation in the M395 vemurafenib-

resistant sub-line. (a) Survival curves of an isogenic cell line pair to 72 h of PLX4032 treatments, suggesting a drug-saturable resistance mechanism in M395 R. Results are shown relative to DMSO-treated controls (mean \pm SEM, n = 5; dashed line, 50% inhibition). (b) Q-PCR levels of indicated RTKs using RNA/cDNA for two isogenic models of PLX4032 acquired resistance. M229 R5 is known to over-express PDGFRβ. Results are average values of duplicates (relative to tubulin). (c) pERK level modulation by PLX4032 (0, 0.01, 0.1, 1, and 10 μM) in PLX4032-resistant lines with different mechanisms, suggesting MAPK reactivation in M395 R as in M249 R4.

Supplementary Figure S5. Relative *B-RAF* RNA copy numbers in cell lines and tissues. M395 P was transduced stably with an empty lentivirus (V for empty Vector) or a lentivirus carrying V600E B-RAF (B) (corresponding V600EB-RAF protein levels shown in Figure 2a) at various titers. *B-RAF* RNA copy numbers for these stable cell lines were then determined along with (for comparison) those for M395 P vs. M395 R isogenic cell lines as well as for two sets of patient-matched baseline (B) and disease progression (DP) tissues. *B-RAF* levels were determined from RNA/cDNAs using Q-PCR (normalized to tubulin). Results are average values of duplicates. Line indicates a two-fold change.

Supplementary Figure S6. A mutant N-RAS-driven, vemurafenib-resistant short-term melanoma culture and its sensitivity to B-RAFi, MEKi, their combination and C-RAF knockdown. (a) Survival curves of Pt55 R1 to 72 h of PLX4032 (vemurafenib/B-RAFi) or AZD6244 (selumetinib/MEKi) treatments, showcasing differential responses at the micro-molar drug concentration range. Results are shown relative to DMSO-treated controls (mean \pm SEM, n = 5; dashed line, 50% inhibition). (b) Clonogenic assays of using Pt55 R1 with indicated drug treatments (top, 12 days) or stable C-RAF knockdown (bottom, 10 days, with 1 μ M PLX4032). Inhibitors and media were replenished every two days, colonies visualized by crystal violet staining, and quantified (% growth relative to cells treated with 1 μ M PLX4032 (top) or shScr (bottom)). Photographs representative of two independent experiments.

Supplementary Table S1. Biopsy sites of patients studied.

			Anatomia Py Citas			
Study Site	Pt#	Biopsies	Anatomic Bx Sites			
UCLA	1	В	Lymph node- femoral			
		DP1	Lymph node- inguinal			
		DP2	Small bowel			
		DP3	SC and cutaneous- L groin			
	2	В	SC- shoulder			
		DP	Heart			
	3	В	Lymph node- R axillary			
		DP	Soft tissue- abdomen			
	4	В	SC- L base of neck			
		DP1	SC- L neck			
		DP2	SC- L base of neck			
		DP3	SC- L shoulder			
	5	В	Lymph node- L inguinal			
		DP1	Cutaneous- L ant thigh, superior			
		DP2	Cutaneous- L ant thigh, inferior			
	6	B				
	0		Lung			
		DP	Pelvic			
	7	В	SC- L lower flank/buttock			
		DP1	SC- L lower flank/buttock			
		DP2	Soft tissue- L breast			
	8	В	SC- scalp			
		DP	SC- R chest			
	9	В	SC- abdomen			
		DP1	SC- R chest			
		DP2	Cutaneous- L shoulder			
	10	В	Cutaneous- L leg			
		DP1	Cutaneous- L foot			
		DP2	Cutaneous- L leg, medial			
		DP3	Cutaneous- L leg, lateral			
	11	В	SC- R axillary			
		DP	SC- back			
	12	В	SC- abdomen			
		DP	SC- R flank			
	13	В	Soft tissue- pelvis			
		DP	Soft tissue- pelvis			
MIA	14	В	SC- L chest			
		DP	SC- abdomen			
	15	В	SC- Upper chest			
	.	DP	SC- abdomen			
	16	В	Lymph node- R inguinal			
	.0	DP	Brain			
	17	В	Lymph node- R neck			
	.,	DP	SC- R neck			
	18	В	SC- L groin			
	.0	DP	SC- L flank			
VI	19	В	Lymph node- inguinal			
V 1	Pt56	DP	Soft tissue- pelvis			
	20	В	SC- R neck			
	SL	DP	SC-R leg			
)L	טר	ou-n ity			

Supplementary Table S2. Exome sequencing data characteristics.

Pt #8								
	Normal	Baseline	DP					
Library	50+50 PE, 100+100 PE	50+50 PE, 100+100 PE	50+50 PE, 100+100 PE					
Total read count	198,535,632	270,137,370	256,439,396					
Capture specificity	43.2%	44.1%	42.3%					
% of targeted base covered at >= 10x	89.5%	90.3%	90.6%					
Average Coverage	107.6 x	132.6 x	123.3 x					

Type of somatic alterations	DP-specific #
Non-synonymous or nsSNVs	4
INDELs	0
CNVs	871 (468:Amplified, 403:Deleted)

Pt #5								
	Normal	Baseline	DP					
Library	76 SE	76+76 PE	76+76 PE					
Total read count	62,448,536	137,656,936	147,415,956					
Capture specificity	75.2%	78.1%	74.7%					
% of targeted base covered at >= 10x	88%	92%	93%					
Average Coverage	52.7 x	88.8 x	114.3 x					

Type of somatic alterations	DP-specific #
Non-synonymous or nsSNVs	1
INDELs	0
CNVs	734 (424:Amplified, 310:Deleted)

Supplementary Table S3. DP-specific somatic nsSNVs.

	Pt #8										
		R	٧	P value	P value						
		е	а	(DP vs.	(DP vs.			AA		PhyloP	
Chr.	Position	f	r	normal)	baseline)	Accession ID	Gene	change	AA position	Score	Polyphen
						NM_001014447,N			000/050 040/		
4	8609063	С	Т	1.25E-004	4.28E-005	M_001014448,N M_003652	CPZ	HIS/TYR	380/653,243/ 516,369/642	5.362	probably damaging
4	0009003	U		1.25E-004	4.200-000	IVI_003632	CFZ	PHE/TY	310,309/042	3.362	uamaging
4	101108952	Α	Т	3.23E-013	5.26E-017	NM 145244	DDIT4L	R	155/194	2.674	benign
						NM 032518,NM		LEU/VA	609/643,609/		J
4	109745350	G	С	1.53E-013	8.87E-017	198721	COL25A1	L	655	-0.041	benign
		_						PRO/LE			possibly
4	110791146	С	Т	1.32E-022	1.62E-034	NM_198506	LRIT3	U	369/635	2.898	damaging
	95839582		_	0.405.000	E 22E 222	NM 017004	INTS8	ALA/PR O	100/000	0.007	hanian
8	124792307	G T	С	8.18E-023 6.02E-012	5.33E-032 1.90E-020	NM_017864 NM_144963	FAM91A1	VAL/ALA	133/996 211/839	0.907 3.5	benign benign
0	124/92307	<u> </u>	U	6.02E-012	1.900-020	144963	FAIVISTAT	ARG/CY	211/039	3.3	probably
8	134125756	С	Т	2.01E-009	6.69E-018	NM 003235	TG	S	2555/2769	-1.964	damaging
					0.000			SER/PH			probably
10	11894129	С	Τ	1.59E-005	3.89E-006	NM_153256	C10orf47	Е	18/436	1.599	damaging
						NM_018518,NM_		PRO/LE	360/875,361/		possibly
10	13225081	С	Τ	2.07E-025	2.07E-025	182751	MCM10	U	876	3.903	damaging
10	17041040	_	_	1 005 014	0.005.015	NIM 014041	PTPLA	SER/PH E	184/289	0.100	possibly damaging
10	17641343	G	Α	1.22E-014	2.08E-015	NM_014241	PIPLA	TRP/sto	184/289	6.163	uamaging
10	19856502	G	Α	4.96E-025	4.15E-025	XM 295865	C10orf112	p	1560/1818	4.889	
								GLU/LY	1000,1010		probably
10	45878069	G	Α	2.21E-007	1.95E-008	NM_000698	ALOX5	S	97/675	5.36	damaging
								SER/LE			
10	79769683	G	Α	2.58E-017	1.05E-014	NM_007055	POLR3A	U OFF (DL)	570/1391	5.708	benign
10	91520377	С	Т	4.06E-016	3.43E-015	NM 016195	KIF20B	SER/PH E	1552/1781	2.821	possibly damaging
10	91320377	U	<u> </u>	4.060-016	3.43⊑-015	14141_016195	KIFZUD	GLU/LY	1002/1761	2.021	possibly
10	106982927	G	Α	8.71E-040	1.25E-051	NM 014978	SORCS3	S	930/1223	5.526	damaging
_								PRO/HI			probably
10	131665425	G	Τ	0.0225472	0.0336512	NM_001005463	EBF3	S	331/552	5.984	damaging
13	113825980	С	Т	7.00E-005	2.29E-007	NM_003891	PROZ	ALA/VAL	255/401	-0.203	benign
						NM_001130417,N					
						M_033262,NM_0			227/299,854/		
						58240,NM_18293 2,NM_182936,NM		VAL/LE	926,853/925, 850/922,213/		probably
14	70512882	С	Α	0.009946	0.0068087	183002	SLC8A3	VAL/LE	285,856/928	6.222	damaging
1-7	70012002	_	/ \	3.000040	0.0000007		0200710	ARG/GL	200,000,020	0.222	possibly
15	45393436	С	Т	1.64E-007	5.54E-007	NM_014080	DUOX2	N	963/1549	2.902	damaging
						NM_001130852,N			352/429,398/		
19	45296786	С	Т	0.0047006	0.0276535	M_012116	CBLC	ALA/VAL	475	2.095	benign

						Pt #5					
		R	٧	P value	P value						
		е	а	(DP vs.	(DP vs.			AA		PhyloP	
Chr.	Position	f	r	normal)	baseline)	Accession ID	Gene	change	AA position	Score	Polyphen
								ASP/TY			possibly
1	184556124	С	Α	1.14E-11	1.07E-19	NM_003292	TPR	R	2171/2364	4.96	damaging
								GLU/AS			
X	100418099	Τ	Α	1.86E-4	3.55E-07	NM_024885	TAF7L	Р	341/463	-6.19	neutral

Supplementary Table S4. Primer and shRNA sequences.

qRT-PCR	Foward	Reverse
PDGFRb	TTCCATGCCGAGTAACAGAC	CGTTGGTGATCATAGGGGAC
IGF1R	CCGCAGACACCTACAACATC	CAATGTGAAAGGCCGAAGGT
COT	CCCCTGGAAGCTGACTTACA	CTGGGATCAGTTTACACGCC
B-RAF	ATGTTGAATGTGACAGCACC	CTCACACCACTGGGTAACAA
trB-RAF	TGCCATTCCGGAGGAGAAAAC	AGGCTTGTAACTGCTGAGGTG
Tubulin	GACAGCTCTTCCACCCAGAG	TGAAGTCCTGTGCACTGGTC
GAPDH	CAATGACCCCTTCATTGACC	GACAAGCTTCCCGTTCTCAG
gDNA copy	Forward	Reverse
B-RAF set1	ACCTCAGCAGTTACAAGCCT	CACTGGGAACCAGGAGCTAA
B-RAF set2	GATATTGCACGACAGACTGCA	AGCATCCTTATGTTCCTGGACA
Globin	AATTCACCCCACCAGTGCAG	CTTCCCGTTCTCAGCCTTGA
shRNA primer	Sense	Antisense
sequences		
shSCRAMBLED	TGGAATCTCATTCGATGCATACTT	TCGAGAAAAAGGAATCTCATTCG
	CAAGAGAGTATGCATCGAATGAGATTCCTTTTTTC	ATGCATACTCTCTGAAGTATGCATCGAATGAGATTCCA
ShC-RAF1	TGACAGAGATTCAAGCTATTT	TCGAGAAAAAACAGAGAGATTCA
	CAAGAGAATAGCTTGAATCTCTCTGTTTTTTC	AGCTATTCTCTTGAAATAGCTTGAATCTCTCTGTCA
ShC-RAF3	TGCAAAGAACATCATCCATAGTT	TCGAGAAAAACAAGAACATCATC
	CAAGAGACTATGGATGATGTTCTTTGTTTTTC	CATAGTCTCTTGAACTATGGATGATGTTCTTTGCA
ShB-RAF1	TGACAGAGACCTCAAGAGTAATT	TCGAGAAAAAACAGAGACCTCAAG
	CAAGAGATTACTCTTGAGGTCTCTGTTTTTTC	AGTAATCTCTTGAATTACTCTTGAGGTCTCTGTCA
ShB-RAF3	TGCAACAACAGGGACCAGATATT	TCGAGAAAAACAACAACAGGGACC
	CAAGAGATATCTGGTCCCTGTTGTTGTTTTTC	AGATATCTCTTGAATATCTGGTCCCTGTTGTTGCA